
探索跳跃式思维链:DeepSeek创造力垫底,Qwen系列接近人类顶尖水平
探索跳跃式思维链:DeepSeek创造力垫底,Qwen系列接近人类顶尖水平在大语言模型 (LLM) 的研究中,与以 Chain-of-Thought 为代表的逻辑思维能力相比,LLM 中同等重要的 Leap-of-Thought 能力,也称为创造力,目前的讨论和分析仍然较少。这可能会严重阻碍 LLM 在创造力上的发展。造成这种困局的一个主要原因是,面对「创造力」,我们很难构建一个合适且自动化的评估流程。
在大语言模型 (LLM) 的研究中,与以 Chain-of-Thought 为代表的逻辑思维能力相比,LLM 中同等重要的 Leap-of-Thought 能力,也称为创造力,目前的讨论和分析仍然较少。这可能会严重阻碍 LLM 在创造力上的发展。造成这种困局的一个主要原因是,面对「创造力」,我们很难构建一个合适且自动化的评估流程。
本文深入解析一项开创性研究——"Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning",该研究通过基于规则的强化学习技术显著提升了语言模型的推理能力。微软亚洲的研究团队受DeepSeek-R1成功经验的启发,利用结构化的逻辑谜题作为训练场,为模型创建了一个可以系统学习和改进推理技能的环境。
我们现在使用 LLM 来处理所有的理解工作,并确保我们不会向用户发送任何生成文本,这样我们就可以完全自信地说,我们没有幻觉的风险,没有提示注入和劫持等风险。
最初,查询扩展是为那些靠关键词匹配来判断相关性的搜索系统设计的,比如 tf-idf 或其他稀疏向量方案。这类方法有些天然的缺陷:词语稍微变个形式,像 "ran" 和 "running",或者 "optimise" 和 "optimize",都会影响匹配结果。虽然可以用语言预处理来解决一部分问题,但远远不够。技术术语、同义词和相关词就更难处理了。
在当今的 AI 领域,图灵奖得主 Yann LeCun 算是一个另类。即便眼见着自回归 LLM 的能力越来越强大,能解决的任务也越来越多,他也依然坚持自己的看法:自回归 LLM 没有光明的未来。
随着金融机构和专业人士越来越多地将大语言模型(LLMs)纳入其工作流程中,金融领域与人工智能社区之间依然存在显著障碍,包括专有数据和专业知识的壁垒。本文提出了 FinRobot,一种支持多个金融专业化人工智能智能体的新型开源 AI 智能体平台,每个代理均由 LLM 提供动力。
「慢思考」(Slow-Thinking),也被称为测试时扩展(Test-Time Scaling),成为提升 LLM 推理能力的新方向。近年来,OpenAI 的 o1 [4]、DeepSeek 的 R1 [5] 以及 Qwen 的 QwQ [6] 等顶尖推理大模型的发布,进一步印证了推理过程的扩展是优化 LLM 逻辑能力的有效路径。
自 DeepSeek-R1 发布以来,群组相对策略优化(GRPO)因其有效性和易于训练而成为大型语言模型强化学习的热门话题。R1 论文展示了如何使用 GRPO 从遵循 LLM(DeepSeek-v3)的基本指令转变为推理模型(DeepSeek-R1)。
近日,资深机器学习研究科学家 Cameron R. Wolfe 更新了一篇超长的博客文章,详细介绍了 LLM scaling 的当前状况,并分享了他对 AI 研究未来的看法。
「除了 Claude、豆包和 Gemini 之外,知名的闭源和开源 LLM 通常表现出很高的蒸馏度。」这是中国科学院深圳先进技术研究院、北大、零一万物等机构的研究者在一篇新论文中得出的结论。